Arbitrary Lagrangian–Eulerian finite element method for curved and deforming surfaces
نویسندگان
چکیده
منابع مشابه
Finite Element Based Tracking of Deforming Surfaces
We present an approach to robustly track the geometry of an object that deforms over time from a set of input point clouds captured from a single viewpoint. The deformations we consider are caused by applying forces to known locations on the object’s surface. Our method combines the use of prior information on the geometry of the object modeled by a smooth template and the use of a linear finit...
متن کاملMixed finite element formulation enriched by Adomian method for vibration analysis of horizontally curved beams
Abstract: The vibration analysis of horizontally curved beams is generally led to higher order shape functions using direct finite element method, resulting in more time-consuming computation process. In this paper, the weak-form mixed finite element method was used to reduce the order of shape functions. The shape functions were first considered linear which did not provide adequate accuracy....
متن کاملA Finite Element Method for Elliptic Equations on Surfaces
Abstract. In this paper a new finite element approach for the discretization of elliptic partial differential equations on surfaces is treated. The main idea is to use finite element spaces that are induced by triangulations of an “outer” domain to discretize the partial differential equation on the surface. The method is particularly suitable for problems in which there is a coupling with a fl...
متن کاملA Volume Mesh Finite Element Method for Pdes on Surfaces
We treat a surface finite element method that is based on the trace of a standard finite element space on a tetrahedral triangulation of an outer domain that contains a stationary 2D surface. This surface FEM is used to discretize partial differential equation on the surface. We demonstrate the performance of this method for stationary and time-dependent diffusion equations. For the stationary ...
متن کاملEulerian finite element method for parabolic PDEs on implicit surfaces
We define an Eulerian level set method for parabolic partial differential equations on a stationary hypersurface Γ contained in a domain Ω ⊂ Rn+1. The method is based on formulating the partial differential equations on all level surfaces of a prescribed function Φ whose zero level set is Γ . Eulerian surface gradients are formulated by using a projection of the gradient in Rn+1 onto the level ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2020
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2020.109253